3.10.78 \(\int \frac {1}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx\) [978]

Optimal. Leaf size=153 \[ \frac {d x \sqrt {a+b x^2}}{a c \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{a c x}-\frac {\sqrt {d} \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

d*x*(b*x^2+a)^(1/2)/a/c/(d*x^2+c)^(1/2)-(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1
+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)
^(1/2)-(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/a/c/x

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {491, 12, 506, 422} \begin {gather*} -\frac {\sqrt {d} \sqrt {a+b x^2} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {d x \sqrt {a+b x^2}}{a c \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{a c x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(d*x*Sqrt[a + b*x^2])/(a*c*Sqrt[c + d*x^2]) - (Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(a*c*x) - (Sqrt[d]*Sqrt[a + b*
x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt[c]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]
*Sqrt[c + d*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 491

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx &=-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{a c x}+\frac {\int \frac {b d x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a c}\\ &=-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{a c x}+\frac {(b d) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a c}\\ &=\frac {d x \sqrt {a+b x^2}}{a c \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{a c x}-\frac {d \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{a}\\ &=\frac {d x \sqrt {a+b x^2}}{a c \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{a c x}-\frac {\sqrt {d} \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.22, size = 146, normalized size = 0.95 \begin {gather*} \frac {-\frac {\left (a+b x^2\right ) \left (c+d x^2\right )}{c x}-i a \sqrt {\frac {b}{a}} \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \left (E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{a \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(-(((a + b*x^2)*(c + d*x^2))/(c*x)) - I*a*Sqrt[b/a]*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*(EllipticE[I*ArcSi
nh[Sqrt[b/a]*x], (a*d)/(b*c)] - EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(a*Sqrt[a + b*x^2]*Sqrt[c + d
*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 224, normalized size = 1.46

method result size
risch \(-\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}{a c x}-\frac {b \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{a \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(189\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {\sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{a c x}-\frac {b \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{a \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(196\)
default \(\frac {\left (-\sqrt {-\frac {b}{a}}\, b d \,x^{4}-b c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, x \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )+b c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, x \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )-\sqrt {-\frac {b}{a}}\, a d \,x^{2}-\sqrt {-\frac {b}{a}}\, b c \,x^{2}-\sqrt {-\frac {b}{a}}\, a c \right ) \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{x c \sqrt {-\frac {b}{a}}\, a \left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right )}\) \(224\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-(-b/a)^(1/2)*b*d*x^4-b*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*x*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))
+b*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*x*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))-(-b/a)^(1/2)*a*d*x^2-
(-b/a)^(1/2)*b*c*x^2-(-b/a)^(1/2)*a*c)*(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)/x/c/(-b/a)^(1/2)/a/(b*d*x^4+a*d*x^2+b*c
*x^2+a*c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*x^2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{2} \sqrt {a + b x^{2}} \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{x^2\,\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)),x)

[Out]

int(1/(x^2*(a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)), x)

________________________________________________________________________________________